

Model "Z" Condenser Only Solar HVAC I/O/M manual

Air conditioning & Heating

Split System Heat Pump & Air Conditioner 3 Tons R410A

NOTE: Appearance of unit may vary.

ALL phases of this installation must comply with NATIONAL, STATE AND LOCAL CODES

IMPORTANT - This Document is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

These instructions do not cover all variations in systems or provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to your installing dealer or local distributor.

Note: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacturer's split systems are A.H.R.I. rated only with TXV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability.

Table of Contents

General Description	2
Safety Information	4
Part Number and Description	5
2 Ton Cooling Only Dimensions	6
2 Ton Heat Pump Dimensions	7
3 Ton Cooling Only Dimensions	8
3 Ton Heat Pump Dimensions	9
4 Ton Cooling Only Dimensions	10
4 Ton Heat Pump Dimensions	11
5 Ton Cooling Only Dimensions	12
5 Ton Heat Pump Dimensions	13
Condenser Clearances	14
Unit Location Considerations	15 - 16
Unit Preparation	17
Refrigerant Line Considerations	18 - 23
Electrical - Low Voltage	24 - 25
Electrical - High Voltage	26
Start UP	27
System Charge Adjustment	28
Solar HVAC Wiring Diagram	
Solar Heat Pump Piping Diagram	
Solar HVAC Cool or Gas Heat Pump Plumbing Diagram	
Troubleshooting	33

Safety:

important- This document contains a wiring diagram and service information. This is customer property and is to remain with this unit. Please return to service information pack upon completion of work.

CAUTION

This information is intended for use by individuals possessing adequate backgrounds of electrical and mechanical experience. Any attempt to repair a central air conditioning product may result in personal injury and/or property damage. The manufacturer or seller cannot be responsible for the interpretation of this information, nor can it assume any liability in connection with its use.

WARNING

HAZARDOUS VO LTAGE!

Failure to follow this warning could result in property damage, severe personal injury, or death.

Disconnect all electric power, Including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power cannot be inadvertently energized.

WARNING

REFRIGERANT OIL!

Any attempt to repair a central air conditioning product may result in property damage, severe personal injury, or dooth

These units use R-410 A refrigerant which operates at 50 to 70% higher pressures than R-22. Use only R-410A approved service equipment. Refrigerant cylinders are painted a "Rose" color to indicate the type of refrigerant and may contain a "dip" tube to allow for charging of liquid refrigerant into the system. All R-410A systems with variable speed compressors use a PVE oil that readily absorbs moisture from the atmosphere To limit this "hygroscopic" action. the system should remain sealed whenever possible. If a system has been open to the atmosphere for more than 4 hours, the compressor oil must be replaced. Never break a vacuum with air and always change the driers when opening the system for component replacement.

CAUTION

HOT SUR FACE!

May cause minor to severe burning. Failure to follow this Caution could result in property damage or personal injury. Do not touch top of compressor.

CAUTION

CONTAINS REFRIGERANT!

Failure to follow proper procedures can result in personal illness or injury or severe equipment damage.

System contains oil and refrigerant under high pressure. Recover refrigerant to relieve pressure before opening system.

CAUTION

GROUNDING REQUIRED!

Failure to inspect or use proper service tools may result in equipment damage or personal injury.

Reconnect all grounding devices. All parts of this

product that are capable of conducting electrical current are grounded. if grounding wires, screws, straps, clips, nuts, or washers used to complete a path to ground are removed for service, they must be returned to their original position and properly fastened.

WARNING

SERVICE VALVES!

Failure to follow this warning will result in abrupt release of system charge and may result in personal injury and/or property damage. Extreme caution should be exercised when opening the Liquid Line Service valve. Turn valve stem counterclockwise only until the stem contacts the rolled edge. No torque is required.

WARNING

BRAZING REQUIRED!

Failure to inspect lines or use proper service tools may result in equipment damage or personal injury. if using existing refrigerant lines make certain that all joints are brazed, not soldered.

WARNING

HIGH LEAKAGE CURRENT!

Failure to follow this warning could result in property damage, severe personal injury, or death.

Earth connection essential before connecting electrical supply.

Model "Z" Part Number Scheme

SHR1Z-23 4 5 67 8 910 11 - 12

Type (1)

D - Cooling Only P - Heat Pump

BTU's (2,3)

24 - 24,000 BTUs 36 - 36,000 BTUs 48 - 48,000 BTUs 60 - 60,000 BTUs

Fan (4)

0 - No Fan

Voltage (5)

G - 230 VAC 1Φ H - 230VAC 3Φ

Electric Heat (6,7)

00 - No Heat

Heat Stages (8)

A - No Controls

Disconnect (9,10)

00 - No Disconnect 01 - 240V - 30A Fuse 11 - 240V - 30A Switch

Configuration (11)

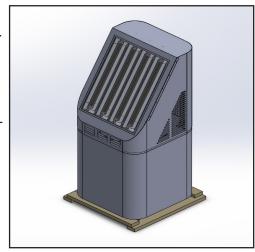
0 - Condenser Only

Options (12)

0 - No Options

D - Condenser Coil (UG)

Y - Start Up


7 - Phase Monitor

Model "Z" Description

A Solar HVAC Residential Unit is more than twice as efficient as a standard residential split unit.

A solar box equipped with chambers lined with specialty reflective film is mounted to the top of the condensing unit. Through a patented process, ambient light is converted to thermal energy which reduces the energy demand on the compressor.

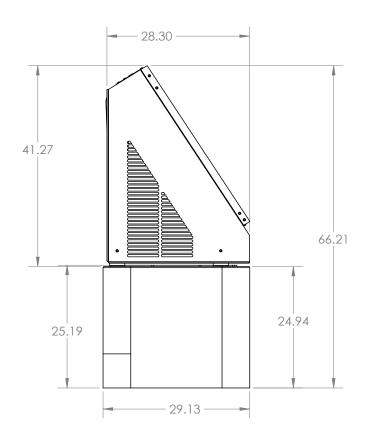
Units come with a 1-year parts warranty and 10 year compressor warranty.

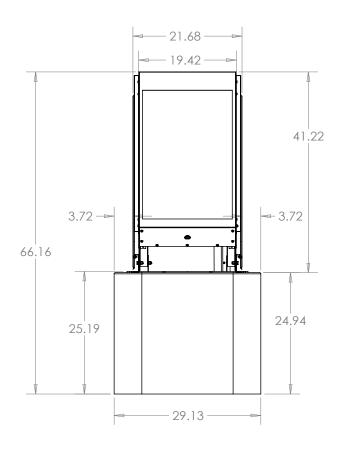
2 Ton Cooling Only Condenser Dimensions

Model		SHRDZ-24 (2 Ton)	
Co	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
	Canacity	Btu/h	24000
Cooling	Capacity	W	1920
	EER	Btu/h, W	12.5
	SEER		17.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 71

N	^	4	_	
ľ	v	L	ᆫ	

Unit should be UL 1995 listed


Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100


Note:

Face solar panels south for optimal performance.

(Outdoor Unit) Model		SHRDZ-24 (2 Ton)
Outdoor	Net - Lbs (kg)	257 (117)
Weight	*Gross - Lbs (kg)	262 (119)
Electrical Data	Minimum Circuit Ampacity	17.7 A
208/230 1ф	Max. Overcurrent Protection	30 A
Electrical Minimum Circuit Ampacity		10.23 A
Data 208/230 3ф	Max. Overcurrent Protection	20 A
Outdoor Noise Level (dB(A))		78
Operation Temperatures (°F)		5 - 118

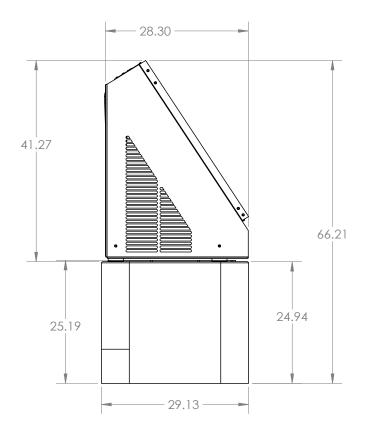
^{*} Gross = Net Weight + Shipping Box

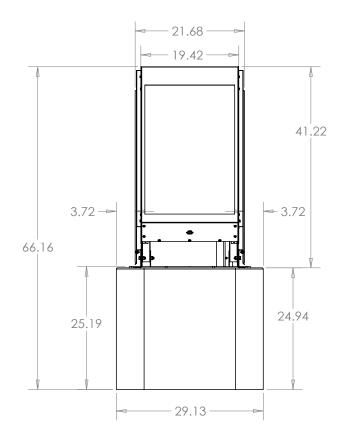
SUB-0028-Z2D PD 05/20/22 V02.00

2 Ton Heat Pump Condenser Dimensions

	Model		SHRPZ-24 (2 Ton)
Co	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
	Canacity	Btu/h	24000
Cooling	Capacity	W	1920
	EER	Btu/h, W	12.5
	SEER		17.5
	Capacity	Btu/h	24000
Heating	COP	Btu/h.W	3.66
	HSPF		9.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 71

(Outdoor Unit) Model		SHRPZ-24 (2 Ton)
Outdoor	Net - Lbs (kg)	257 (117)
Weight	*Gross - Lbs (kg)	262 (119)
Electrical Data	Minimum Circuit Ampacity	17.7 A
208/230 1ф	Max. Overcurrent Protection	30 A
Electrical	Minimum Circuit Ampacity	10.23 A
Data 208/230 3 Max. Overcurrent Protection		20 A
Outdoor Noise Level (dB(A))		78
Operation Temperatures (°F)		5 - 118


* Gross = Net Weight + Shipping Box Note: Calculated E COP value with solar panel: 4.60


Unit should be UL 1995 listed

Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100

Note:

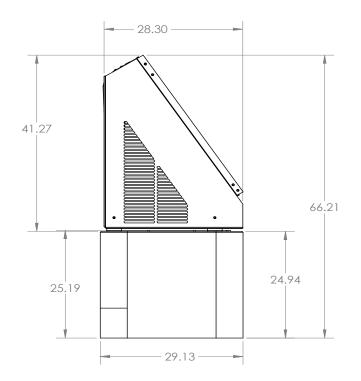
Face solar panels south for optimal performance.

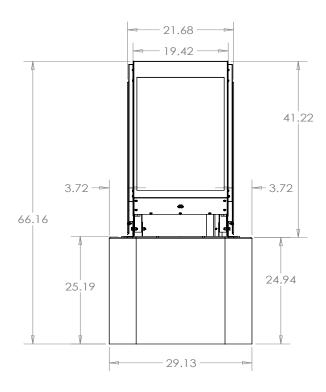
SUB-0028-Z2P

3 Ton Cooling Only Condenser Dimensions

Model			SHRDZ-36 (3 Ton)
Co	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
	Canacity	Btu/h	34500
Cooling	Capacity	W	2974
	EER	Btu/h, W	11.6
	SEER		17.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 71

Unit should be UL 1995 listed


Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100


Note:

Face solar panels south for optimal performance.

(Outdoor Unit) Model		SHRDZ-36 (3 Ton)
Outdoor	Net - Lbs (kg)	257 (117)
Weight	*Gross - Lbs (kg)	262 (119)
Electrical Data	Minimum Circuit Ampacity	24.2 A
208/230 1ф	Max. Overcurrent Protection	40 A
Electrical Data	Minimum Circuit Ampacity	13.98 A
208/230 3ф	Max. Overcurrent Protection	20 A
Outdoor Noise Level (dB(A))		78
Operation Temperatures (°F)		5 - 118

^{*} Gross = Net Weight + Shipping Box

SUB-0028-Z3D PD 05/20/22 V02.00

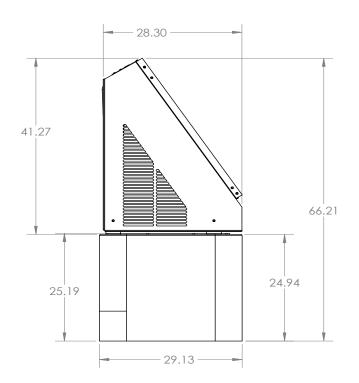
3 Ton Heat Pump Condenser Dimensions

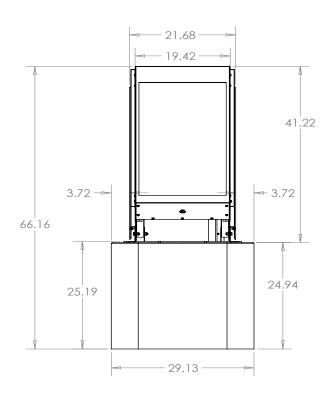
	Model		SHRPZ-36 (3 Ton)
Со	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
	Canacity	Btu/h	34500
Cooling	Capacity	W	2974
	EER	Btu/h, W	11.6
	SEER		17.5
	Capacity	Btu/h	34500
Heating	COP	Btu/h.W	3.40
	HSPF		9
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 71

(Outdoo	SHRPZ-36 (3 Ton)	
Outdoor	Net - Lbs (kg)	257 (117)
Weight	*Gross - Lbs (kg)	262 (119)
Electrical	Minimum Circuit Ampacity	24.2 A
Data 208/230 1ф	Max. Overcurrent Protection	40 A
Electrical Data	Minimum Circuit Ampacity	13.98 A
208/230 3ф	Max. Overcurrent Protection	20 A
Outdoor Noise Level (dB(A))		78
Operation Temperatures (°F)		5 - 118

* Gross = Net Weight + Shipping Box

Note: Calculated E COP value with solar panel: 4.25


Note:


Unit should be UL 1995 listed

Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100

Note:

Face solar panels south for optimal performance.

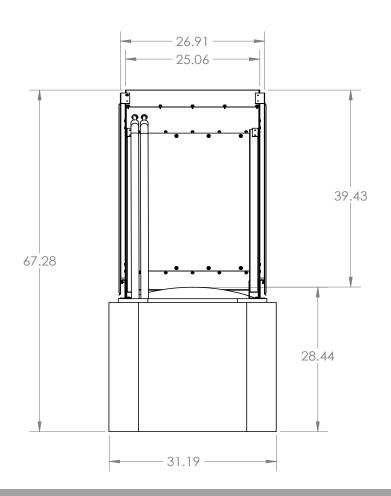
SUB-0028-Z3P PD 05/20/22 V02.00

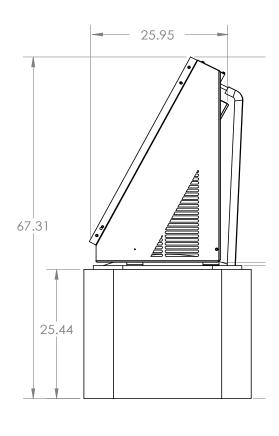
4 Ton Cooling Only Condenser Dimensions

Model		SHRDZ-48 (4 Ton)	
Со	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
Cooling	Canacity	Btu/h	47000
	Capacity	W	4692
	EER	Btu/h, W	11.6
	SEER		17.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 79-5/8

N	^	+	0	,
ľ	v	L	c	

Unit should be UL 1995 listed


Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100


Note

Face solar panels south for optimal performance.

(Outdoo	SHRDZ-48 (4 Ton)	
Outdoor	Net - Lbs (kg)	301 (137)
Weight	*Gross - Lbs (kg)	306 (139)
Electrical	Minimum Circuit Ampacity	31.9 A
Data 208/230 1ф	Max. Overcurrent Protection	50 A
Electrical Data	Minimum Circuit Ampacity	18.43 A
208/230 3ф	Max. Overcurrent Protection	20 A
Outdoor Noise Level (dB(A))		79
Operation Temperatures (°F)		5 - 118

^{*} Gross = Net Weight + Shipping Box

SUB-0028-Z4D PD 05/20/22 V02.00

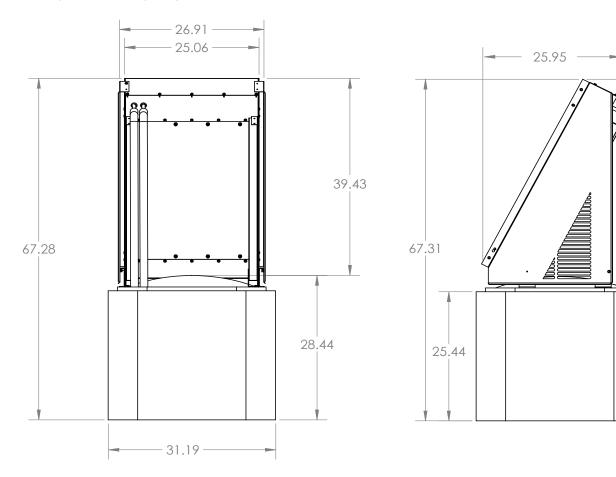
4 Ton Heat Pump Condenser Dimensions

Model			SHRPZ-48 (4 Ton)
Co	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
	Canacity	Btu/h	47000
Cooling	Capacity	W	4692
	EER	Btu/h, W	11.6
	SEER		17.5
	Capacity	Btu/h	46500
Heating	COP	Btu/h.W	2.93
	HSPF		9.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 79-5/8

(Outdoo	SHRPZ-48 (4 Ton)	
Outdoor	Net - Lbs (kg)	301 (137)
Weight	*Gross - Lbs (kg)	306 (139)
Electrical Data	Minimum Circuit Ampacity	31.9 A
208/230 1ф	Max. Overcurrent Protection	50 A
Electrical Data	Minimum Circuit Ampacity	18.43 A
208/230 3ф	Max. Overcurrent Protection	20 A
Outdoor Noise Level (dB(A))		79
Operation Temperatures (°F)		5 - 118

* Gross = Net Weight + Shipping Box

Note: Calculated E COP value with solar panel: 3.63


Note:

Unit should be UL 1995 listed

Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100

Note:

Face solar panels south for optimal performance.

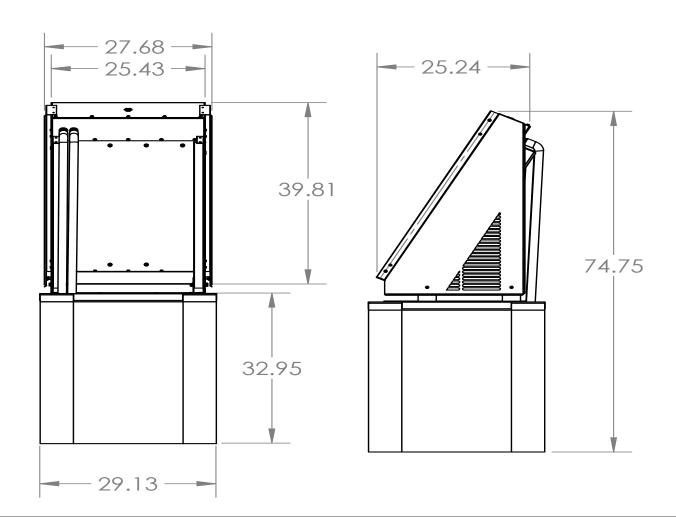
SUB-0028-Z4P PD 05/20/22 V02.00

5 Ton Cooling Only Condenser Dimensions

Model			SHRDZ-60 (5 Ton)
Code		Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
Cooling	Canacity	Btu/h	56000
	ng Capacity	W	5185
	EER	Btu/h, W	10.8
	SEER		17.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 79-5/8

NI	oto	٠.
14	OLG	٠.

Unit should be UL 1995 listed


Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100

Note:

Face solar panels south for optimal performance.

(Outdoo	SHRDZ-60 (5 Ton)	
Outdoor	Net - Lbs (kg)	301 (137)
Weight	*Gross - Lbs (kg)	306 (139)
Electrical Data	Minimum Circuit Ampacity	36.5 A
208/230 1ф	Max. Overcurrent Protection	60 A
Electrical	Minimum Circuit Ampacity	21.09 A
208/230 3ф	Data 208/230 3 Max. Overcurrent Protection	
Outdoor Noise Level (dB(A))		79
Operation Temperatures (°F)		5 - 118

^{*} Gross = Net Weight + Shipping Box

SUB-0028-Z5D PD 05/20/22 V02.00

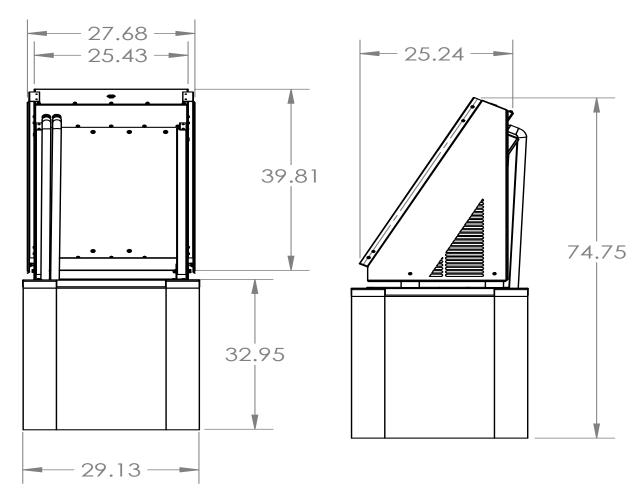
5 Ton Heat Pump Condenser Dimensions

Model			SHRPZ-60 (5 Ton)
Со	de	Outdoor Code	
Outdoor Po	wer Supply	V/Hz	208-230V/60Hz
	Capacity	Btu/h	56000
Cooling	Сарасну	W	5185
	EER	Btu/h, W	10.8
	SEER		17.5
	Capacity	Btu/h	55000
Heating	COP	Btu/h.W	3.16
	HSPF		9.5
Compressor	Туре		Twin-rotary DC
Outdoor Dimension	Packing (WxHxD)	Inch	32-5/8 x 32-5/8 x 79-5/8

(Outdoo	SHRPZ-60 (5 Ton)	
Outdoor	Net - Lbs (kg)	301 (137)
Weight	*Gross - Lbs (kg)	306 (139)
Electrical Data	Minimum Circuit Ampacity	36.5 A
208/230 1ф	Max. Overcurrent Protection	60 A
Electrical Data	Minimum Circuit Ampacity	21.09 A
208/230 3ф	Max. Overcurrent Protection	30 A
Outdoor Noise Level (dB(A))		79
Operation Temperatures (°F)		5 - 118

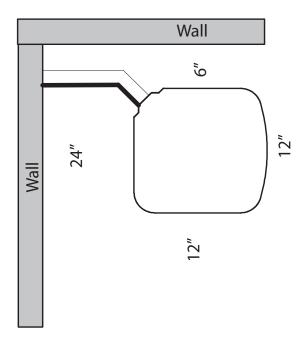
* Gross = Net Weight + Shipping Box

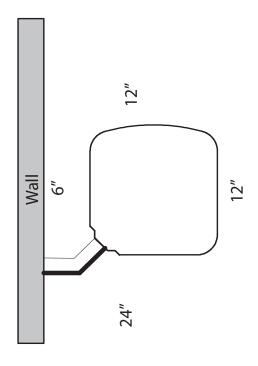
Note: Calculated E COP value with solar panel: 3.89

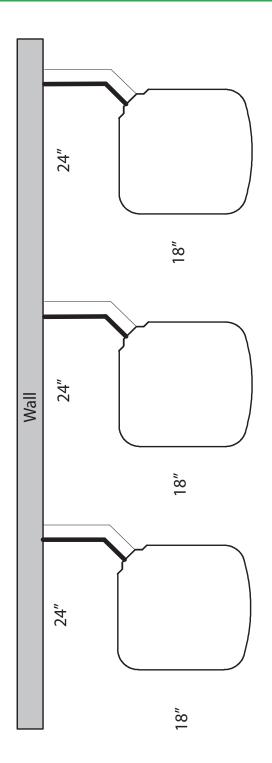

Note:

Unit should be UL 1995 listed

Unit should be OG-100 Certified to the Solar certification on ICC901/SRCC100


Note:


Face solar panels south for optimal performance.

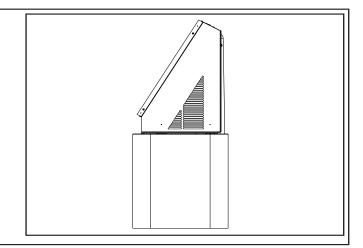


SUB-0028-Z5P PD 05/20/22 V02.00

Model "Z" Condenser Clearances

* - Unit Type (Cooling Only (D) or Heat Pump (P))

** - BTU's - x 1000 (24, 36, 48, 60)


SUB-0028-Z5D PD 05/20/22 V02.00

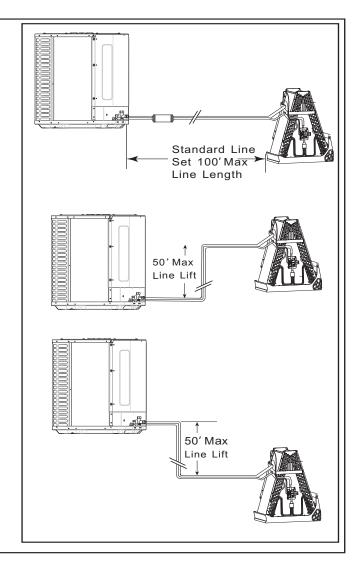
Unit Location Considerations

Dimensions

The unit's weight values is on the carton box.

When mounting the outdoor unit on a roof, be sure the roof will support the unit's weight. Property selected isolation is recommended to prevent sound or vibration transmission to the building structure.

Refrigerant Piping Limits


Maximum line length = 100 feet.

Maximum vertical length = 50 feet.

Compressor crankcase heat is required for line lengths over 50 feet.

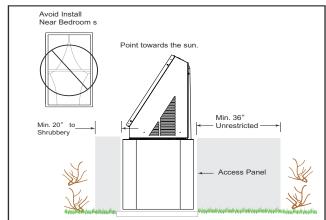
Use only the line diameters indicated in Table 5. 1.

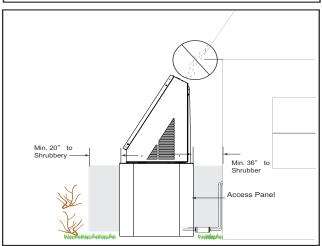
Such as the connecting tube is more than 60 feet, does not use large Suction line than recommend.

Unit Location Considerations (cont'd)

Location Restrictions

Ensure the top discharge area is unrestricted for at least 60 inches above the unit.

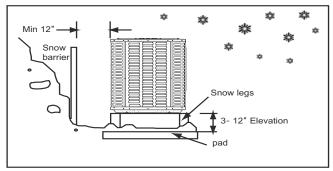

Clearance must be provided in front of the control box (access panels) and any other side requiring service.


Do not locate close to bedrooms, operational sounds may be objectionable.

Position the outdoor unit a minimum of 20 inches from any wall or surrounding shrubbery to ensure adequate airflow.

Outdoor unit location must be far enough away from any structure to prevent excess roof runoff water from pouring directly on the unit.

This unit meets Miami-Dade wind rating and seismic zone 5 requirements.

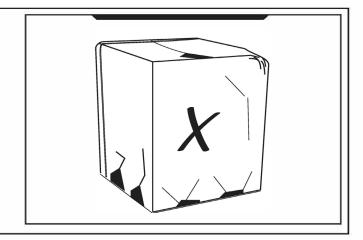


Cold Climate Considerations (Heat Pump Only)

Note: It is recommended that these precautions be taken for units being installed in areas where snow accumulation and prolonged below-freezing temperatures occur.

•Units should be elevated 3–12 inches above the pad or rooftop, depending on local weather. This additional height will allow drainage of snow and ice melted during defrost cycle prior to its refreezing. Ensure that drain holes in unit base pan are not obstructed, preventing drainage of defrost water.
•If possible, avoid locations that are likely to accumulate snow drifts. if not possible, a snow drift barrier should be installed around the unit to prevent a build-up of snow on the sides of the unit.

NOTE: Solar box not shown



Unit Preparation

Prepare The Unit For Installation

STEP 1 - Check for damage and report promptly to the carrier any damage found to the unit.

The charge port can be used to check to be sure the refrigerant charge has been retained during shipment.

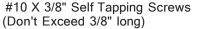
Setting the Unit

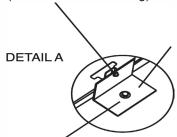
Pad Installation

When installing the unit on a support pad, such as a concrete slab, consider the following:

The pad should be at least 1-2" larger than the unit on all sides.

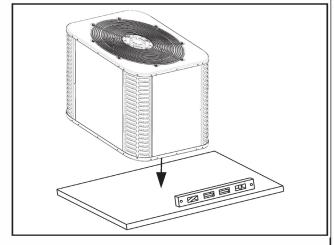
The pad must be separate from any structure.

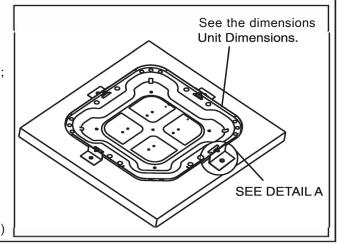

The pad must be level.


The pad should be high enough above grade to allow for drainage.

The pad location must comply with National, State, and Local codes.

IMPORTANT NOTE:

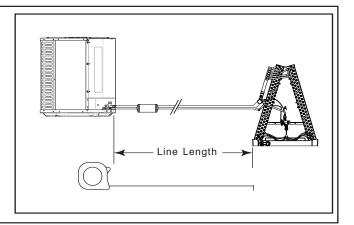

These instructions are intended to provide a method to tie-down system to cement slab as a securing procedure for high wind areas. It is recommended to check Local Codes for tie-down methods and protocols.



Brackets: 2" width, 3/64", 14 ga thickness, height as required; provided by distributor.

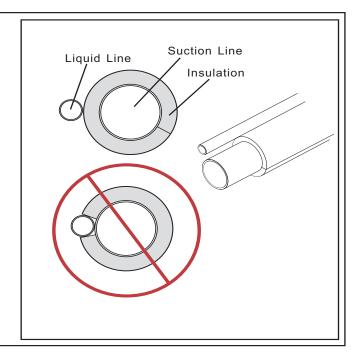
7/16" X 3" Hex Washer Head Concrete Screws (7/16" Pilot Hole Needed. Pilot Hole Should Be1/4" Deeper Than The Fastener Embedment. This unit meets Miami-Dade wind rating and seismic zone 5 requirements.)

NOTE: Solar box not shown


Refrigerant Line Considerations

Refrigerant Line and Service Value Connection Sizes

	Line	Sizes	ServiceValve	Connection Sizes
Model	Suction Line	Liquid Line	Suction Line Connection	Liquid Line Connection
24/36	3/4	3/8	3/4	3/8
48/60	7/8	3/8	7/8	3/8


Required Refrigerant Line Length

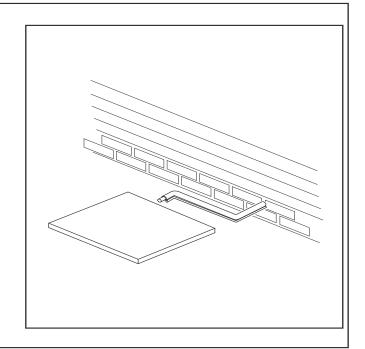
Determine the required line length.

Refrigerant Line Insulation

Imporant: The Suction Line must always be insulated. DO NOT allow the Liquid Line and Suction Line to come in direct (metal to metal) contact.

Reuse Existing Refrigerant Lines

A CAUTION


If using existing refrigerant lines make certain that all joints are brazed, not soldered.

For retrofit applications, where the existing refrigerant lines will be used, the following precautions should be taken:

Ensure that the refrigerant lines are the correct size. Refer to Section 2.2 listed and Table 5.1.

Ensure that the refrigerant lines are free of leaks, acid, and oil.

Note: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacturer's split systems are A.H.R.I. rated only with TXV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability.

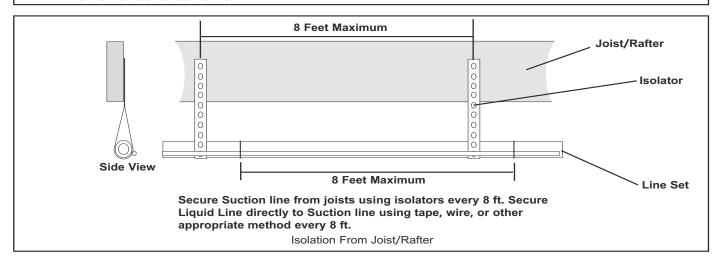
Refrigerant Line Routing

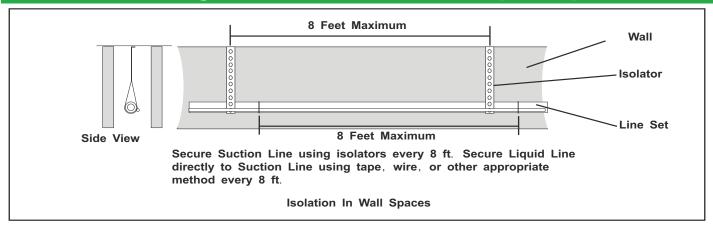
Precautions

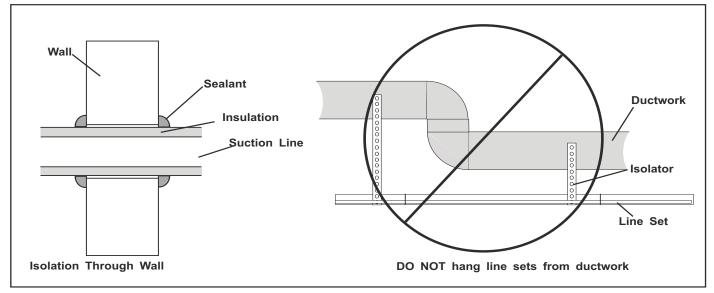
Important: Take precautions to prevent noise within the building structure due to vibration transmission from the refrigerant lines.

Comply with National, State, and Local Codes when isolating line sets from joists, rafters, walls, or other structural elements.

For Example:

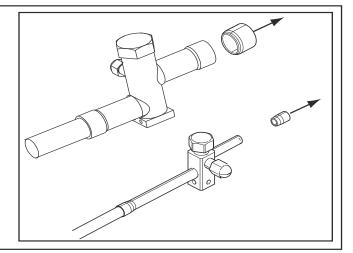

When the refrigerant lines have to be fastened to floor joists or other framing in a structure, use isolation type hangers.

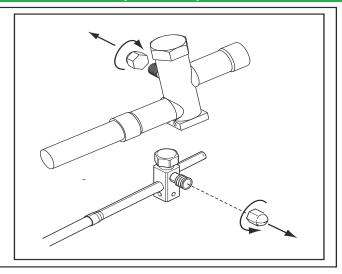

Isolation hangers should also be used when refrigerant lines are run in stud spaces or enclosed ceilings.


Where the refrigerant lines run through a wall or sill, they should be insulated and isolated.

Isolate the lines from all ductwork.

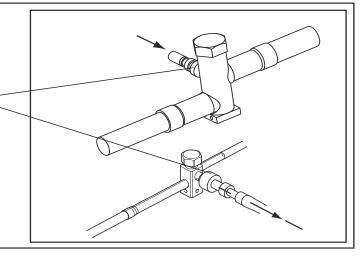
Minimize the number of 90° turns.




Refrigerant Line Brazing

Braze The Refrigerant Lines

STEP 1 – Remove caps or plugs. Use a deburing tool to debur the pipe ends. Clean both internal and external surfaces of the tubing using an emery cloth.

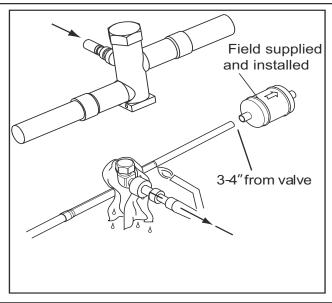


STEP 2 - Remove the pressure tap cap from both service valves.

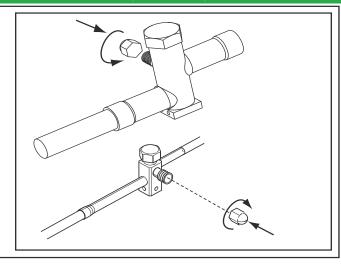
STEP 3 - Purge the refrigerant lines and indoor coil with dry nitrogen.

This pipe must have a thimble

STEP 4 - Wrap a wet rag around the valve body to avoid heat damage and continue the dry nitrogen purge.

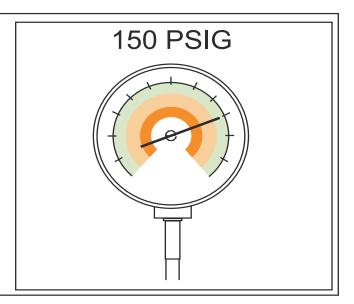

Braze the refrigerant lines to the service valves.

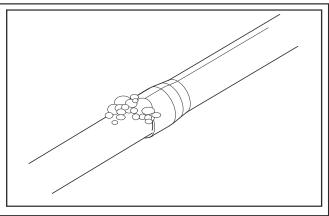
Check liquid line filter drier's directional flow arrow to confirm correct direction of refrigeration flow (away from outdoor unit and toward evaporator coil) as illustrated. Braze the filter drier to the Liquid Line.


Continue the dry nitrogen purge. Do not remove the wet rag until all brazing is completed.

Important: Remove the wet rag before stopping the dry nitrogen purge.

Note: Install drier in Liquid Line.

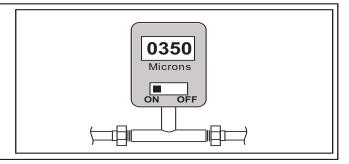

STEP 5 - Replace the pressure tap caps after the service valves have cooled.


Refrigerant Line Leak Check

Check For Leaks

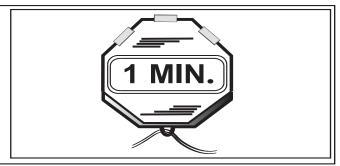
STEP 1 - Pressurize the refrigerant lines and evaporator coil to 150 PSIG using dry nitrogen.

STEP 2 - Check for leaks by using a soapy solution or bubbles at each brazed location.



Evacuation

Evacuate the Refrigerant Lines and Indoor Coil


Important: Do not open the service valves until the refrigerant lines and indoor coil leak check and evacuation are complete.

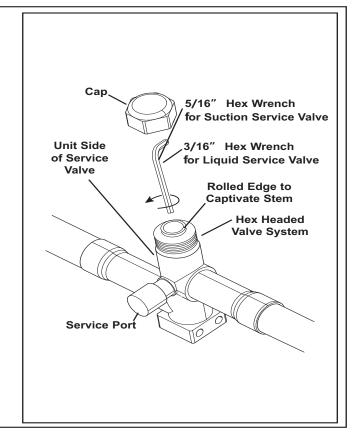
STEP 1- Evacuate until the micron gauge reads no higher than 350 microns, then close the valve to the vacuum pump.

STEP 2- Observe the micron gauge. Evacuation is complete if the micron gauge does not rise above 500 microns in one (1) minute.

Once evacuation is complete blank off the vacuum pump and micron gauge, and close the valves on the manifold gauge set.

Service Valves

Open the Service Valves


WARNING

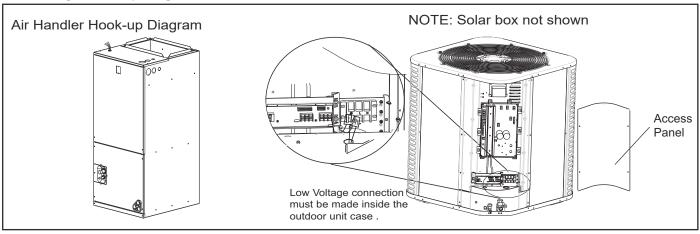
Extreme caution should be exercised when opening the Liquid Line Service Valve. Turn counterclock wise until the valve stem just touches the rolled edge. No torque is required. Failure to follow this warning will result in abrupt release of system charge and may result in personal injury and /or property damage.

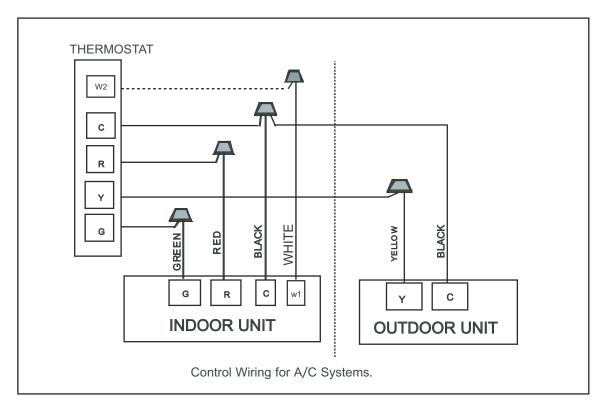
Important: Leak check and evacuation must be completed before opening the service valves.

Important: The Suction Service Valve must be opened first BEFORE opening the Liquid Service Valve!

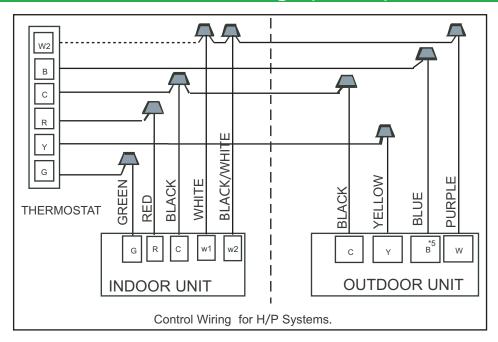
- STEP 1 Remove service valve cap.
- **STEP 2** Fully insert hex wrench into the stem and back out counterclockwise until valve stem just touches the rolled edge (approximately five (5) turns.)
- **STEP 3** Replace the valve stem cap to prevent leaks. Tighten finger tight plus an additional 1/6 turn.
- **STEP 4** Repeat STEPS 1 3 for Liquid Service Valve.

Electrical - Low Voltage


Low Voltage Maximum Wire Length


Table 11.1 defines the maximum total length of low voltage wiring from the outdoor unit, to the indoor unit, and to the thermostat.

Field provided bushing or strain relief is required at the low voltage wire entry point.


Table 11.1		
24 VOLTS		
WIRE SIZE MAX.WIRE LENGTH		
18 AWG 150 Ft.		
16 AWG	225 Ft.	
14 AWG	300 Ft.	

Low Voltage Hook-up Diagrams

Electrical - Low Voltage (cont'd)

Notes:

- 1. Be sure power supply agrees with equipment nameplate.
- 2. Power wiring and grounding of equipment must comply with local codes.
- 3. Low voltage wiring to be No. 18 AWG minimum conductor.
- 4. "----" The electric auxiliary heat connection.
- 5. Heat Pump Operations uses Signal [B] (in lieu of [O])

Electrical - High Voltage

High Voltage Power Supply

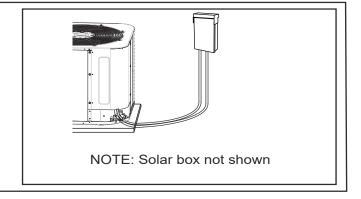
M WARNING

LIVE ELECTRICAL COMPONENTS!

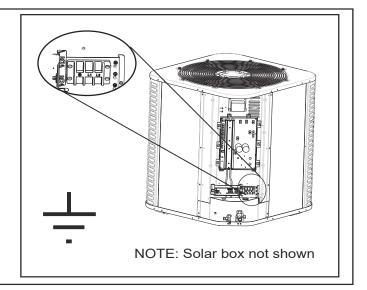
During installation, testing, servicing, and troubleshooting of this product, it may be necessary to work with live electrical components. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

The high voltage power supply must agree with the equipment nameplate.

Power wiring must comply with national, state, and local codes.


Follow instructions on unit wiring diagram located on the inside of the control box cover and in the Service Facts document included with the unit.

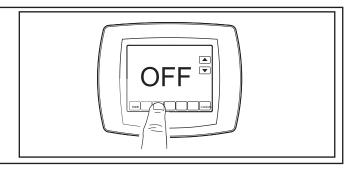
High Voltage Disconnect Switch


Install a separate disconnect switch at the outdoor unit.

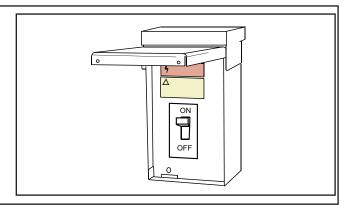
Field provided flexible electrical conduit must be used for high voltage wiring.

High Voltage Ground

Ground the outdoor unit per national, state, and local code requirements.

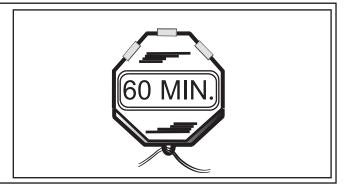


Start Up

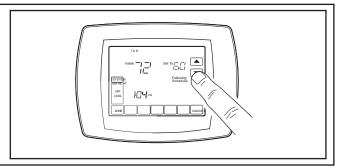

System Start Up

STEP 1 - Ensure Sections 6, 7, 8, 9, 10, 11, and 12 have been completed.

STEP 2 - Set System Thermostat to OFF.



STEP 3 - Turn on disconnect to apply power to the indoor and outdoor units.



STEP 4 - Wait five (5) minutes before moving to Step 5 if no crankcase heater accessory is used,

Wait one (1) hour before starting the unit if compressor crankcase heater accessory is used and the Outdoor Ambient Temperature is below 70 °F.

STEP 5 - Set system thermostat to ON. If Heat Pump, set signal to [B] (in lieu of [O]).

System Charge Adjustment

charging: weigh-In Method

weigh-In Method can be used for the Initial installation, or anytime a system charge is being replaced. weigh-In Method can also be used when power is not available to the equipment site or operating conditions (indoor/Outdoor temperatures) are not In range to verify with the subcooling charging method.

А	В	С
Model	Factory Charge	charge multiplier for interconnecting refrigerant tube length
All models	(The data on nameplate)	0.6 oz/ft

Note: The factory charge in the outdoor unit is sufficient for 15 feet of standard size interconnecting liquid line.

Table 19. New Installations — calculating charge using the weigh-In method

- 1. Measure in feet the distance between the outdoor unit and the indoor unit and record on (Line 1). Include the entire length of the line from the service 1. Line Length (ft) valve to the IDU. 2. Enter the charge multiplier from column C. 2. value from Column C 3. Muitply the total length of refrigerant tubing (Line
- 1) tlmes the value on step 2. Record the resulting
- 4. This Is the amount of refrigerant to weigh-in prior to opening the service valves.

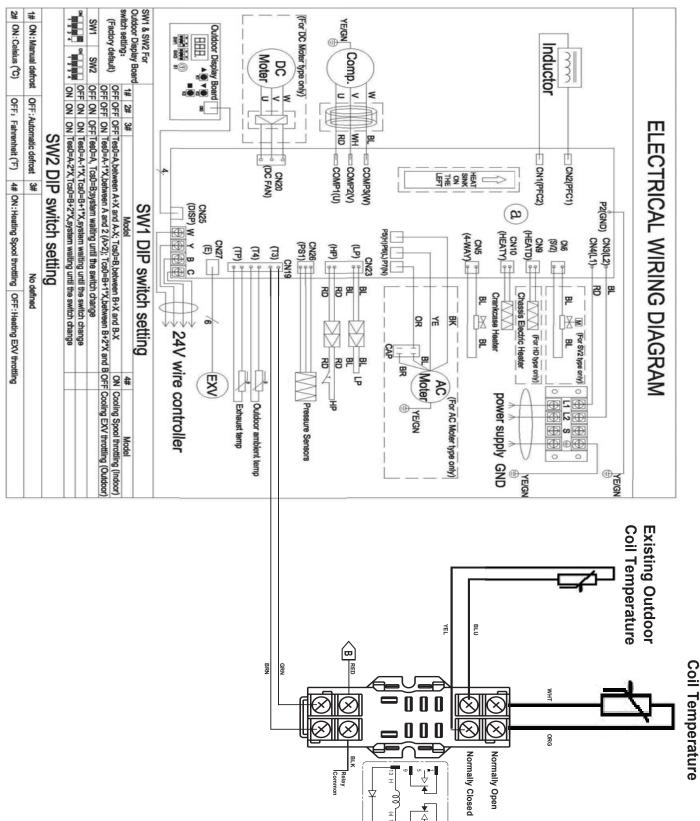
New Installation weigh-In Method worksheeto

- 3. Refrigerant((Step1-15) x Step2) = _____

Note: If line length is Less than 15 feet, Refrigerant=0,don' t charge.

Table 20. Sealed-System Repairs — calculating charge using the weigh-In method.

- 1. Measure in feet the distance between the outdoor unit and the indoor unit and record on (Line 1). Include the entire length of the line from the service valve to the IDU.
- 2. Enter the charge multiplier from cotumn C.
- 3. Multiply the total length of refngerant tubing (Line 1) times the value on (Line 2). Record the result on (Line 3) of the worksheet.
- 4. Record the value in column B to Line 4 of the worksheet.
- 5. Add the values from step 3, step 4, and record the resulting value on Line 5. ThIs is the amount of refrigerant to weigh-in.

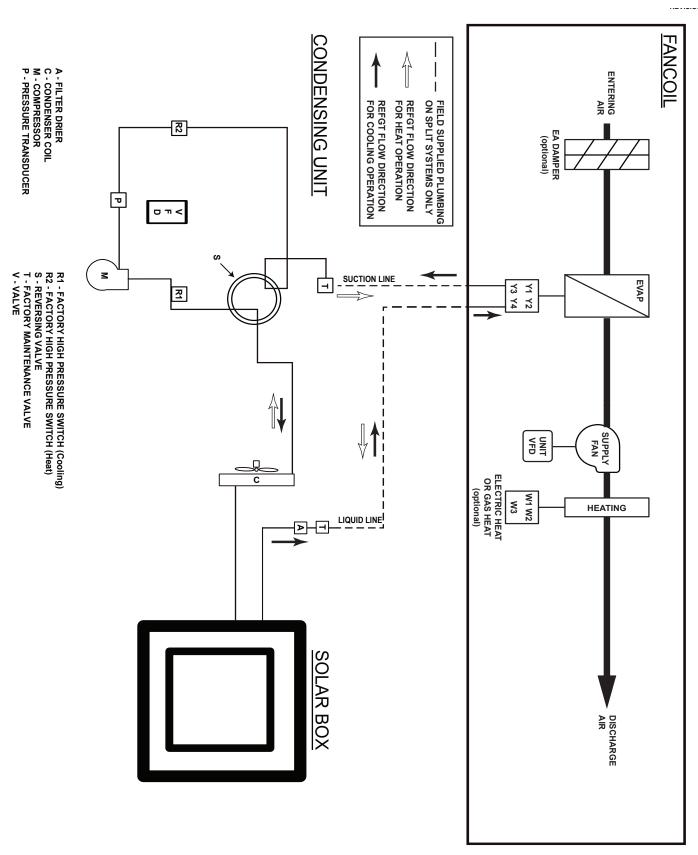

New Installation weigh-In Method worksheet

- 1. Line Length (ft)
- 2. value from Column C
- 3. (Step1-15) x step 2
- 4. Factory charge (column B) +
- 5. Refrigerant (steps 3+4)

Note: If line length is Less than 15 feet, Refrigerant=factory charge

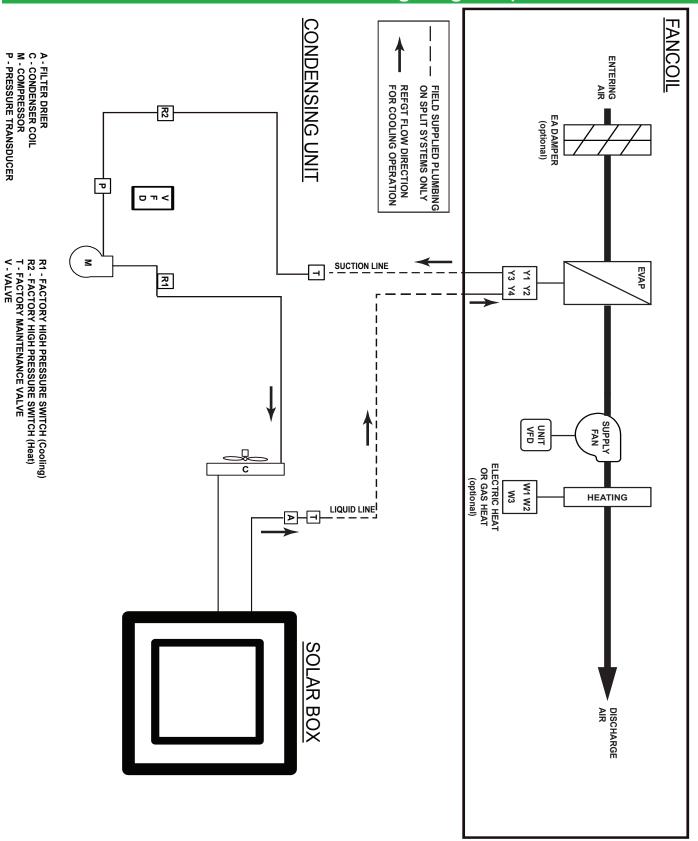
Note: The only mode aperoved for setting validating system charge Is using Charging Mode-cooling. Outdoor Temperature must be between 55°F and 120°F with Indoor Temperature kept between 70°F and 80°F.

Solar HVAC Wiring Diagram (SCH-0029-E v01.01)


Added Outdoor Coil Temperature

Solar HVAC Check Table

	Che	eck	Table
NUM	Display content		Frequency increase (Shift; Actual value)
01	Outdoor power(Model)	17	ΔEV (step ; Actual value)
02	Run mode (0: Standby mode; 2:In cooling	18	100 40
02	mode; 3: In heating mode)	19	IPM modular temp Tfin (°F; Actual value)
03	Arget frequency (Hz ; Actual value)	20	Oil output (CC; Actual value / 8)
04	Running frequency (Hz ; Actual value)	21	Target temp Tes/Tcs (°F; Actual value)
05	Actual frequency (Hz ; Actual value)	22	Pressure value (PSI; Actual value * 25)
06	Fan speed (High / low ; Actual value)	23	Pressure valve transform by T3 (PSI; Actual value * 25)
07	Temp transform by pressure sensor (°F; Actual value)	24	
08	T3 condensing temp (°F; Actual value)	25	Target superheat (°F; Actual value)
09	T4 outdoor ambient temp (°F; Actual value)	26	Discharge temp superheat (°F; Actual value)
10	T5 exhaust temp (°F; Actual value)	28	Ability test mode (1-40; Mode gear)
11	AC current (A; Actual value)	29	Software version number (1-255)
12	Compressor current	31	Enter PI contrlo sign (0 or 1)
13	AC voltage (VAC; Actual value * 2)	34	Frequency limit item
14	DC voltage (VDC; Actual value / 2)	37	Last failure or protection code
15	EXV opening degree (step ; Actual value / 4)		
	Failure a	and	Protection
Code	Failure or protection definition	Code	Failure or protection definition
E4	T4 outdoor air temperature sensor fault	P4	Exhaust overheating protection
E6	T3 Condensate temperature sensor failure	P5	T3 condenser sensor high temp protection(In cooling mode)
E5	T5 Exhaust temperature sensor fault	P6	IPM protection
E9	AC overvoltage/undervoltage protection	P8	IPM high temperature protection (Ft)
E10	EEPROM failure	P9	DC fan motor error
E12	IPM modular sensor error	P12	Wet operation error
E13	Pressure sensor error	P13	High pressure abnormal error(In heating mode)
E14	T3 or T5 sensor disconnect error	P14	High compression ratio protection
E15	High pressure switch error	P15	Low compression ratio protection
НО	Communication fault of master board and driver chip	L1	DC cable bus low voltage protection
H1	T3 sensor high temperature error(In cooling	L2	DC cable bus high voltage protection
н	mode) (20 times P5 error within 180mins)	L4	MCE fault / sync / closed loop
H2	High pressure switch error(20 times P1 error within 150 mins	L5	Zero speed protection
LIO	High pressure abnormal in heating mode (20	L7	Compressor phase loss protection ratio protection
НЗ	times P13 error within 180 mins)	L8	Compressor stalls
H4	IPM modular high temp error (20 times P8 within 120 mins)	L9	Frequency limitation or decline by high pressure
H5	Low pressure error (20 times P2 within 100 mins)	LA	Frequency limitation by voltage
H6	Discharge temperature abnormal error(20 times P4 within 100 mins)	LC	Frequency limitation by condenser temp
H7	Wet operation error (20 times P12 within 200 mins)	LD	Frequency limitation by discharge temp
Н8	T3 condenser sensor disconnect error (20 times E14 within 100 mins)	LE	Frequency limitation by IPM modular high temp
H12	Discharge temp sensor disconnect error(20 times E14 within 180 mins)	LF	Frequency limitation by current
P1	High pressure protection	d0	Oil return
P2	Low pressure protection	dF	Defrost
0.00		dH	Force cooling


PLUMB PER CURCUIT

Solar HVAC HP Piping Diagram (SCH-0005-P v01.02)

PLUMB PER CURCUIT

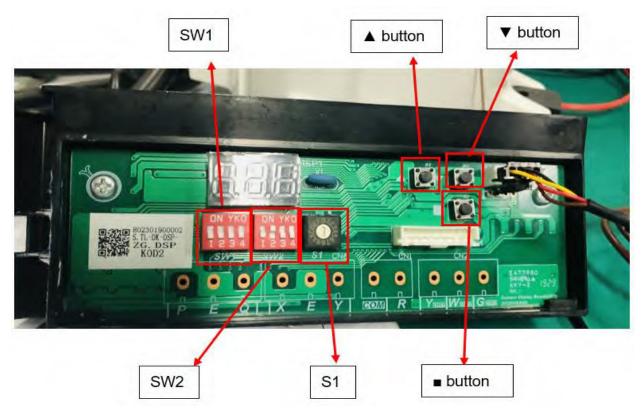
Solar HVAC Cool or Gas Heat Plumbing Diagram (SCH-0006-P v01.03)

Troubleshooting

9. Troubleshooting

9.1. Control logic description

- 1. Display board button function
- ▲ button: check button、setting button"+"
- ▼ button: check button、setting button "-"
- button:
- A. Short press: force cooling mode, display board will show "dH";
- B、Long press: entering test mode, and you can change unit parameter manually:
 When it show "Sc.", then you can set Compressor Frequency manually, using "▲" and "▼"to change frequency.


Then press "■" button, display board will show "SF.", then you can set fan speed manually, using "▲" and "▼"to change fan speed.

Then press "•" button, display board will show "SL.", then you can set expansion valve open degree manually, using

"▲" and "▼"to change expansion valve opening degree.

Then press "■" button, display board will show "SP.", then you can set PFC switch manually, (0 means OFF, 1 means

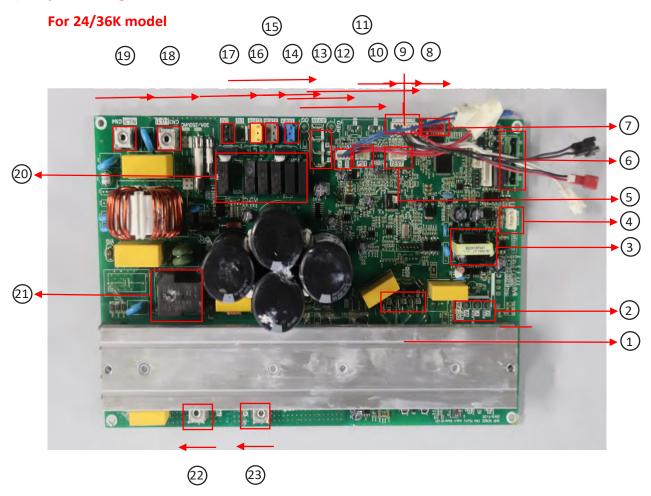
ON), using " \blacktriangle " and " \blacktriangledown " to set PFC switch;

Troubleshooting (cont'd)

SW1:

1st bit	2nd bit	3rd bit	4th bit
Outdoor unit control logic(target evaporator temperature and target condensation			ON: EXV throttling in
temperature) setting, manufacture only.			cooling mode
			OFF: Piston throttling in
			cooling mode
			The function will be active
			after unit power off and
			power on.

SW2:

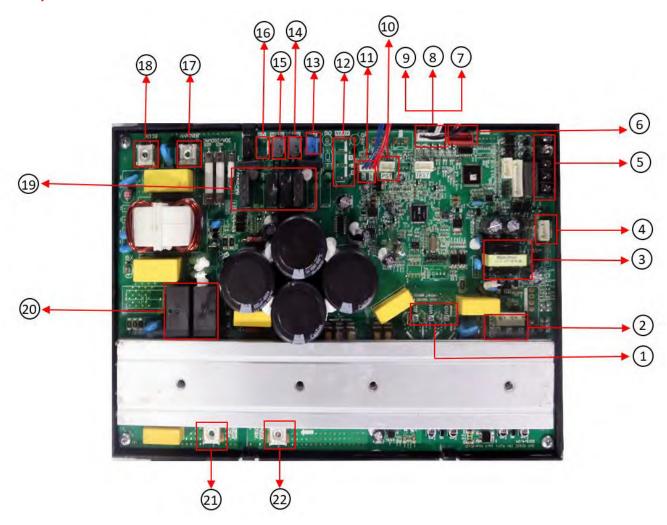

1st bit	2nd bit	3rd bit	4th bit
ON: Manually defrost.	ON: Display as Fahrenheit	Reserved	ON: EXV throttling in
OFF: Automatic defrost	OFF: Display as Celsius		heating mode
The function will be active	The function will be active		OFF: Piston throttling in
immediately after bit	after unit power off and		heating mode
change.	power on.		The function will be active
			after unit power off and
			power on.

S1: Reserved

Troubleshooting (cont'd)

9.2 Parameter point check table

1). Top discharge outdoor unit



Function description for the corresponding position:

No.	Content	No.	Content
1	Compressor wiring terminal	12	High/Low pressure switch ports
2	DC fan motor wiring terminal	13	AC fan motor wiring terminal
3	Transformer	14	Four-way valve control port
4	Outdoor display board wiring terminal	15	Crankcase Heating zone control terminal
5	Reserved	16	Chassis Electric Heater control terminal
6	24V wire controller interface	17	Solenoid valve2 control terminal
7	EXV drive port	18	Power supply connecting terminal
8	Exhaust temperature sensor port(T5)	19	Power supply connecting terminal
9	Outdoor ambient temperature sensor port(T4)	20/21	Relay
10	Condenser temperature sensor port(T3)	22	Inductor wiring terminal 1
11	Pressure sensors ports	23	Inductor wiring terminal 2

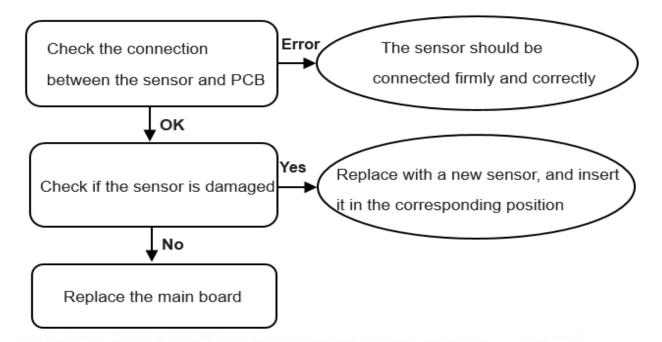
Troubleshooting (cont'd)

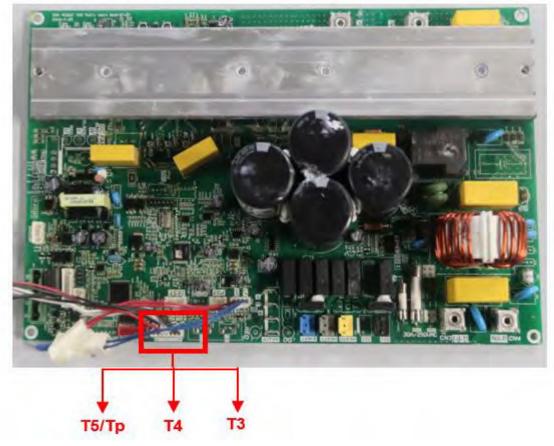
For 48/60K model

Function description for the corresponding position:

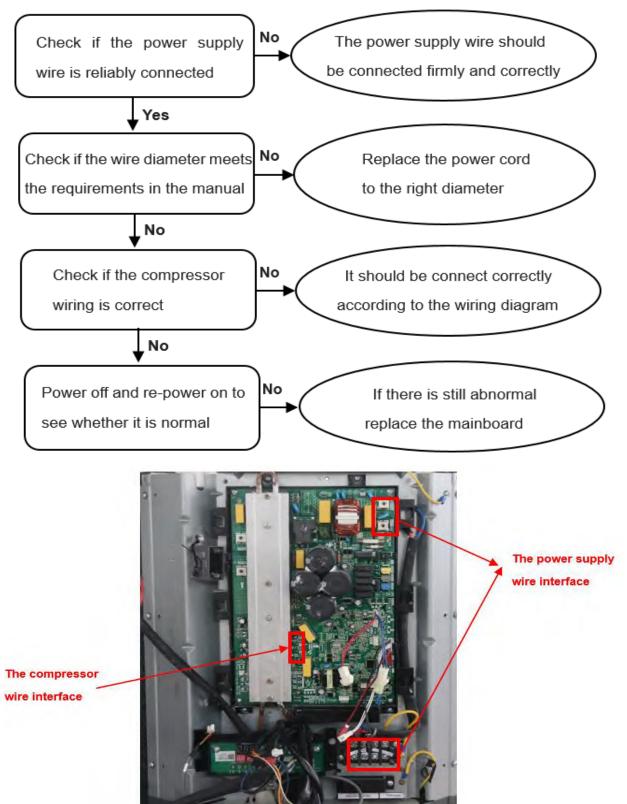
No.	Content	No.	Content
1	Compressor wiring terminal	12	AC fan motor wiring terminal
2	DC fan motor wiring terminal	13	Four-way valve control port
3	Transformer	14	Crankcase Heating zone control terminal
4	Outdoor display board wiring terminal	15	Chassis Electric Heater control terminal
5	24V wire controller interface	16	Solenoid valve control terminal
6	EXV drive port	17	Power supply connecting terminal
7	Exhaust temperature sensor port(T5)	18	Power supply connecting terminal
8	Outdoor ambient temperature sensor port(T4)	19	Relay
9	Condenser temperature sensor port(T3)	20	Relay
10	Pressure sensors ports	21	Inductor wiring terminal 1
11	High/Low pressure switch ports	22	Inductor wiring terminal 2

9.3 Error codes


CODE	FAULT DESCRIPTION
E4	T4 Outdoor ambient temperature sensor error
E5	T5 Discharge temperature sensor error
E6	T3 Condenser temperature sensor error
E9	AC under voltage protection
E10	EEPROM error
E12	IPM modular sensor error
E13	HLP Pressure sensor error
E14	T3 or T5 sensor disconnect error
E15	High pressure switch error
H0	Communication error of main chip and IPM chip
H1	T3 sensor high temperature error(In cooling mode) (20 times P5 error within 180mins)
H2	High pressure switch error(20 times P1 error within 150 mins)
НЗ	High pressure abnormal in heating mode (20 times P13 error within 180 mins)
H4	IPM modular high temp error (20 times P8 within 120 mins)
H5	Low pressure error (20 times P2 within 100 mins)
H6	Discharge temperature abnormal error(20 times P4 within 100 mins)
H7	Wet operation error (20 times P12 within 200 mins)
H8	T3 condenser sensor disconnect error (20 times E14 within 100 mins)
H12	Discharge temp sensor disconnect error(20 times E14 within 180 mins)
P1	High pressure protection
P2	Low pressure protection
P3	DC over current protection
P4	T5 Discharge temperature abnormal error
P5	T3 Condenser sensor high temp protection(In cooling mode)
P6	IPM module protection
P8	IPM high temperature protection (Ft)M high temperature protection (Ft)
P9	DC fan motor error
P12	Wet operation error
P13	High pressure abnormal error(In heating mode)
P14	High compression ratio protection
P15	Low compression ratio protection
L1	DC cable bus low voltage protection


9.3 Error codes continued

L2	DC cable bus high voltage protection
L4	MCE fault / sync / closed loop
L5	Zero speed protection
L7	Compressor phase loss protection ratio protection
L8	Compressor stalls
L9	Frequency limitation or decline by high pressure
LA	Frequency limitation by voltage
LC	Frequency limitation by condenser temp.
LD	Frequency limitation by discharge temp
LE	Frequency limitation by IPM modular high temp
LF	Frequency limitation by current
d0	Oil return
dF	Defrost
dH	Force cooling


9.4 Troubleshooting guidelines

E4/E5/E6 (T4/T5/T3 temperature sensors error)

E9 (AC under voltage protection)

E10 (EEPROM failure)

Power off and re-power on to see whether it is normal If there is still abnormal replace the mainboard

E12 (IPM modular sensor error)

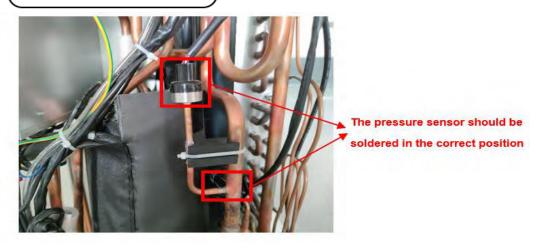
Power off and re-power on to see whether it is normal

If there is still abnormal replace the mainboard

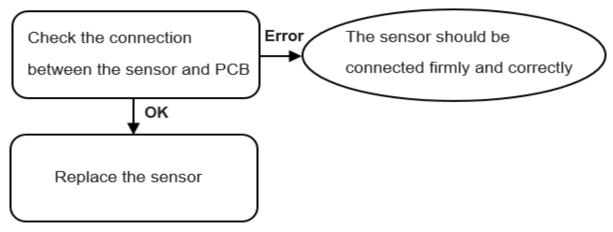
E13 (HLP Pressure sensor error)

Check the connection between the sensor and PCB

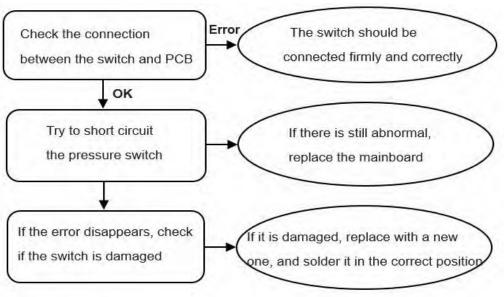
The sensor should be connected firmly and correctly

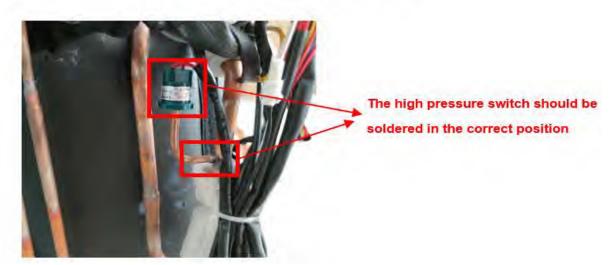

↓ ok

Measure the value of outdoor unit pressure sensor

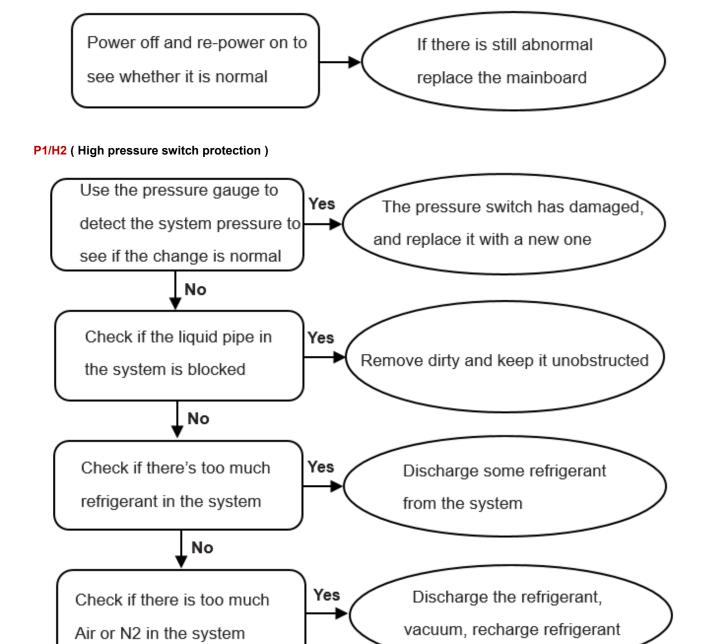

Compare it with the pressure value of the pressure gauge

If the difference is large,
replace with a new sensor, and
weld in the correct position

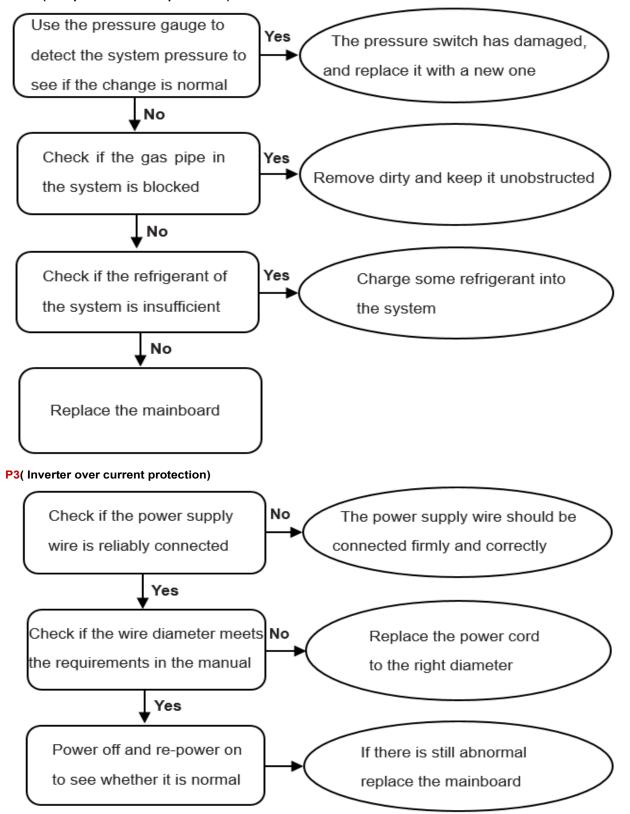

If the difference is small, replace the mainboard

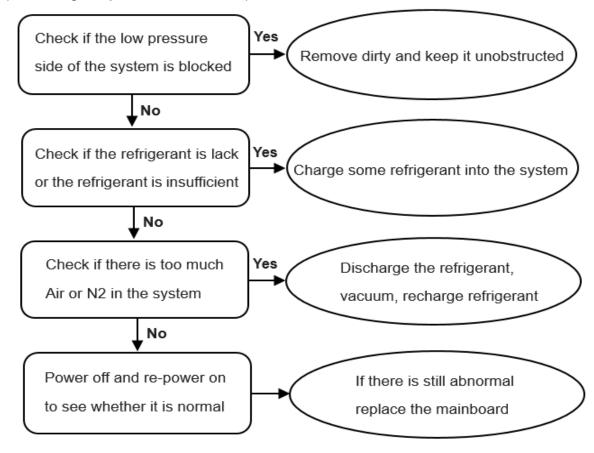


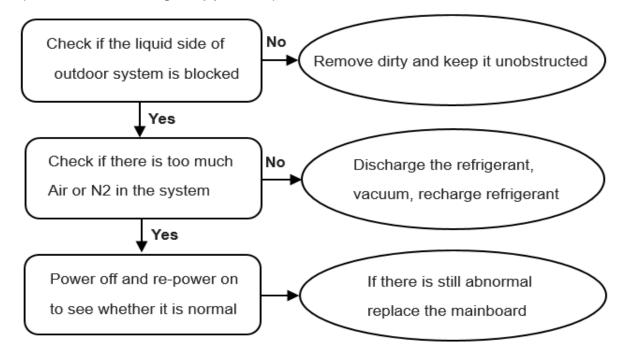
E14/H8/H12 (T3 or T5 sensor disconnect error)



E15 (High pressure switch error)

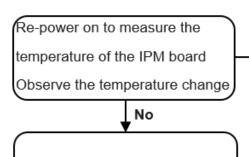



H0 (Communication error of main chip and IPM chip)


P2/H5 (Low pressure switch protection)

P4/H6 (T5 Discharge temperature abnormal error)

P5/H1(T3 condenser sensor high temp protection)

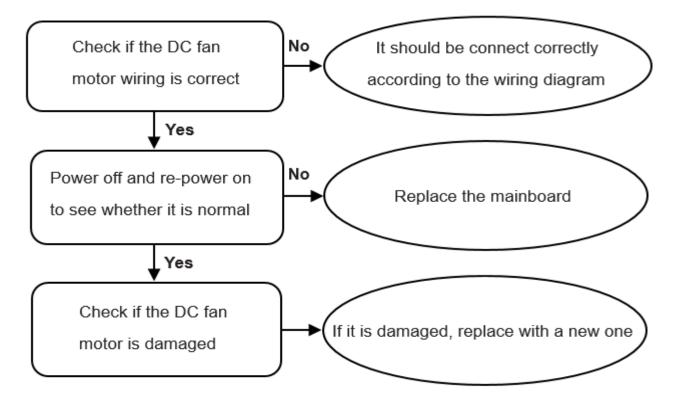


P6 (IPM module protection)

Power off and re-power on to see whether it is normal

If there is still abnormal replace the mainboard

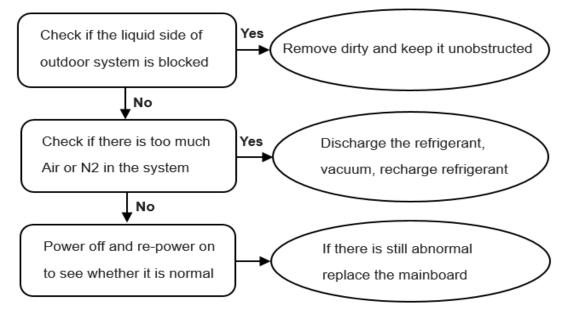
P8/H4 (IPM high temperature protection)


If the temperature changes normally, but the final temperature is too high, remove the IPM heat sink cover plate, apply heat dissipation silicone grease evenly again, then tighten the screws to fasten the cover plate

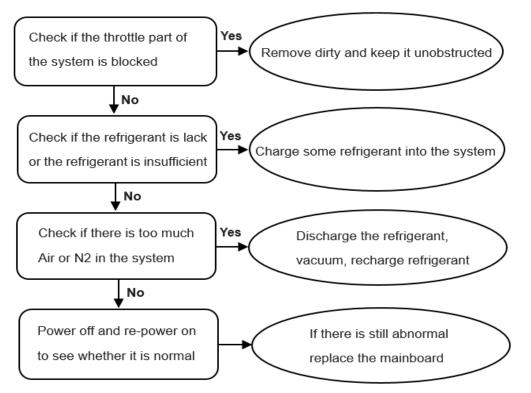
Replace the mainboard

IPM heat sink cover plate should be fastened

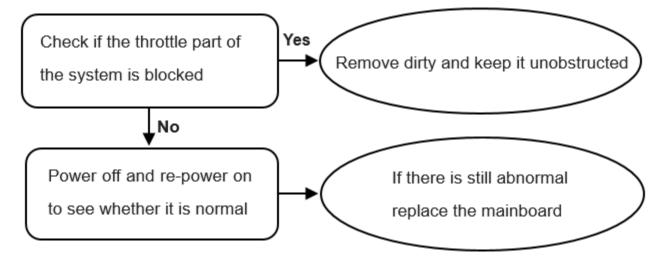
P9 (DC fan motor error)

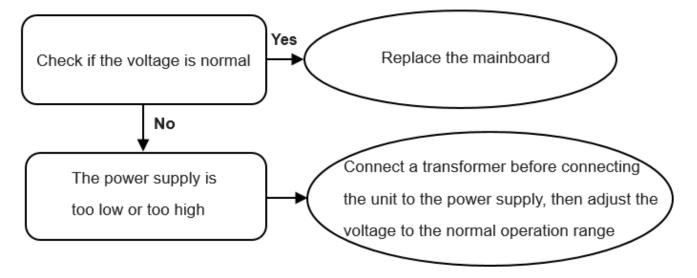


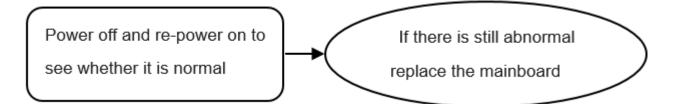
The DC fan motor wire interface


P12/H7 (Wet operation error)

Power off and re-power on to see whether it is normal


P13/H3(High pressure abnormal error-In heating mode)


P14 (High compression ratio protection)


P15 (Low compression ratio protection)

L1/L2(DC cable bus low/high voltage protection)

L4-L8 (IPM module subdivision protection)

L9-LE (Frequency limitation protection, not error)